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On Weight Functions Admitting Chebyshev 
Quadrature 

By Klaus-Jurgen Forster 

Abstract. In this paper we prove the existence of Chebyshev quadrature for three new weight 
functions which are quite different from the two known examples given by Ullman [15] and 
Byrd and Stalla [2]. In particular, we indicate a simple method to construct weight functions 
for which there exist infinitely many Chebyshev quadrature rules. 

1. Introduction. By a weight function w we mean a real-valued nonnegative 
function on [-1, 1] for which the proper or improper Riemann integral exists and has 
positive value. We shall consider quadrature rules Q, of the type 

fl 

Sos(x ) W(x )dX = Qnf [I ]+ R nf I 

having real nodes xv,,, and real weights a,,n' 

A quadrature rule (1) is called a Chebyshev quadrature rule (in the strict sense) if 
the following holds: 

(2) a n = a2.n an,n' 

(3) ~~~-1 < x1,n < X 2 n < ..< X n,n <l 

(4) Rn[f] = O for allf E- 9n. 

( 9, denotes the class of polynomials of degree < n.) We say that a weight function 
w admits Chebyshev quadrature if there exist Chebyshev quadrature rules Qn for all 
positive integers n. 

The study of Chebyshev quadrature rules began in 1874 with the classical paper of 
Chebyshev [3]. Since then, there have been further investigations in the mathematical 
literature. For a review of recent advances in this field we refer to the paper of 
Gautschi [7]. 

Until 1966, the only known weight function admitting Chebyshev quadrature was 
the Chebyshev weight function 

(5) w1(x) (1 _ ) 
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In 1966 Ullman [15] proved that the weight function 

(6) W2(X) = W 1(X) 
I 

+ ax 1 | 

W2(X)::=W1(X+la 2?+2ax, 2a~ 
also admits Chebyshev quadrature. Recently, Byrd and Stalla [2] have shown that 
this result also holds for the weight function 

(7) W3(X) = W1(X) 
I 

x a > 

There appears to be no other concrete example in the literature of weight functions 
admitting Chebyshev quadrature. 

We now consider a weight function w as a product 

(8) w(x) = wI(x)v(x). 

Kahaner [12] has shown that for w E C(-1, 1) to admit Chebyshev quadrature, a 
necessary condition on v is 

(9) v (x) > 2c for all x E (-1, 1), 

where 

c = fo w(x) dx/f W,(x) dx > 0. 

Comparing the above weight functions w1, w2, and w3, we see that in these cases v is 
a rational function continuous on [-1,1]. 

In this paper we shall prove that the weight functions 

(10) W4(X) = WI(X) I X 12(1 ?I X i)2 

(11) W5(X) = w1(x)(I + X)"/4(F/2+(1 + x)1/2)1/2, 

(12) W6(X) = w1(x)(1 - x2)-1/4(l +(1- x2)1/2)1/2 

also admit Chebyshev quadrature. Our method is quite different from those of 
Ullman [15] and Byrd and Stalla [2]. With regard to the still open problem of 
characterizing all weight functions admitting Chebyshev quadrature, it may be of 
interest that in these three cases the corresponding functions v in (8) have singulari- 
ties either at an interior point or at one or both of the end points of the interval 

[-1,1]. 
After establishing the existence of the Chebyshev quadrature rules for the weight 

functions (10), (11) and (12), and obtaining their nodes, we shall indicate a simple 
method for constructing weight functions for which there exist infinitely many 
Chebyshev quadrature rules. Such examples may also help path the way toward a 
solution of the above-mentioned problem. 

2. Construction of the Chebyshev Rules. We first consider the Chebyshev weight 
function w1 given in (5). The corresponding Chebyshev rules Q1 have Gaussian 
degree of precision 2n - 1, i.e., R'[4f] = 0 for all f E )2n-1 (see, e.g., Ghizzetti 
and Ossicini [11, p. 99 ff]). Transforming w1 and Q' to the interval [-1, 01 as well as 
to the interval [0,1] and compounding the two resulting weight functions and rules 
to the interval [-1, 1] gives the weight function W4 together with an equally weighted 
quadrature rule Q21, having 2n nodes and degree of precision 2n - 1. The nodes of 
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the Chebyshev rule Qn are the zeros of the polynomial T1 where T7 denotes the 
Chebyshev polynomial of the first kind of degree n. Hence the nodes of Q2,, are the 
zeros of the polynomial P2n given by 

(13) P2n(x) =Tn (2x + 1) Tn (2x - 1). 

We shall now show that the interpolatory quadrature rule (for definition see, e.g., [1, 
p. 16]) Q2,1, whose nodes are the zeros of 

(14) P2n1(X) =P2n(X) 2, 

is a Chebyshev quadrature rule with 2n nodes for the weight function w4. If P2n - a 
(a E R) has only real zeros, then the interpolatory quadrature formula, whose nodes 
are the zeros of P21 - a, is also equally weighted (see, e.g., [7, p. 103], [9], [4], [5]). 
So, the proof is completed if it is shown that 

(i) R2,1[q2n1] = 0, q2n(X) 

(ii) all zeros of P2,1 are real, pairwise distinct and contained in the open interval 

(-1, 1). 
Because Q4,1 is an interpolatory quadrature rule, we have R ,4[f] = 0 for all 
f E Cg2n -1 and therefore 

24n-2 R 4 
q2n] =R 

- f W4(X) [Tn (2X + 1) Tn (2x - 1) - ] dx 

- -+ ? 2f (X - x2) n/21(2x + 1)T,1(2x + 1) dx 

- -, + 2f wI(x)T,7(x)1T(x + 2) dx 

- -yr + 2f w1(x)Tn(x)2'"- xndx 

- -yr + 2 W1(X){Tn(X)) 2dx = 0, 

using the known properties of T, (cf. here and in the following, e.g., Tricomi [14, p. 
187 ff] or Paszkowski [13]) as well as the symmetry of w4 and P2n. This proves (i). 

To prove (ii), we need consider only the interval [0, 1] since P2n7 is symmetric. 

T,(2x - 1) has in (0, 1) n pairwise distinct real zeros. All n - 1 relative maxima of 

T, (2x - 1) as well as T,1(1) have the value 1. Since T1(2x + 1) > 1 for all x > 0, all 
relative maxima of 1P2J1 as well as p2n (1) have a value not less than 1. Therefore, 

P2,n has all properties required in (ii). 
To establish the Chebyshev quadrature rules Q21 for the weight function W4 for 

all positive n, we consider first the Radau rules for the Chebyshev weight function 

wI. They are given by (see, e.g., Ghizzetti and Ossicini [11, p. 101 ff.]) 

(15) Q+[] = 2- f1 { f(1) + (co 2n- C )) 

and 

(16) Q-f= 27r 1 --1) + Cos 2 77 11 2n -1I 21(1? f 2co - IT 
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We note that the nodes of Qua are the zeros of T7 - T, -1 and that the nodes of Q7 
are the zeros of T, + T,?1>. Both quadrature rules have degree of precision 2n - 2. 
Transforming w1 and Qu+ to the interval [-1, 0] and w1 and Q- to the interval [0, 1] 
and compounding the two resulting weight functions and rules to the interval [-1, 1] 
yields the weight function w4 together with an equally weighted quadrature rule 

Q4,- having 2n - 1 nodes and degree of precision not less than 2n - 2. Because 
of the symmetry of w4 and the symmetry of Q41 this quadrature rule has degree 
of precision 2n - 1 and is therefore a Chebyshev quadrature rule. We have thus 
proven the following theorem. 

THEOREM 1. The weight function w4(x) = (1 - x2)"1/2IX 1/2(1 + IXI)1"2 admits 
Chebyshev quadrature. The nodes of the corresponding Chebyshev rules Q4 are given by 
the zeros of p,4 where 

(17) p4 2(x) = T,, (2x - 1) T7'(2x + 1)- 

(18) XP4n?_1(X) = [Tm(2X - 1) + Tm1(2x - 1)] [Tm(2x + 1) -Tm1(2x + 1)]. 

To establish Chebyshev quadrature for the weight functions w5 and w6, the lemma 
below is helpful (cf. also Gautschi [8, p. 482]). 

LEMMA 1. Let w be a weight function on [-1, 1] with w(x) = w(-x) for all 
x E [-1, 1] and let Q2,1? be a quadrature rule with respect to w given by 

1f 

(19) Q2*+?1 [f ] a0f (0) + L a, [f (XI) + ? (-XI)] 

with 0 < x1 < < xn1. Let iw(x):= w(V'T)/ rx be a weight function on [0, 1] and 
let Q? + I be the quadrature rule with respect to iw given by 

1f 

(20) Q1 + 1 [ f a0f(0) + L 2af ( 
X 

2). 

Then Q2, ?1 has degree of precision 2m + 1 if and only if Qn+j has degree of precision 
m. 

This lemma is well known for w(x) = 1 and is used to derive Gauss rules on [0, 1] 
with respect to the weight function x-1/2. (Note that it is possible for a. to be zero.) 

Application of Lemma 1 to the weight function w4 and considering the rule 

Q2n +I :-=Q2, (i.e., a( = 0) which, because of symmetry, has degree of precision 
2n + 1, gives the weight function 

(21) X1(x) - X -X 1/2(1 + 

on the interval [0, 1] and a corresponding equally weighted quadrature rule Q, 
whose nodes are the zeros of 

(22) P.?(X) = T.1 (22 - 1 ) T.1 (2 rx + 1) - 21 

By Lemma 1 the quadrature rule Q,, has degree of precision n. The nodes of Q2,1 are 
all pairwise distinct and contained in (-1, 1). So by (20), the n nodes of QA are also 
pairwise distinct and contained in (0, 1). Transforming to the interval [-1, 1] yields 
the following theorem. 
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THEOREM 2. The weight function 

W5(X) = (1- X2) ?/2( + X)-1/4(V4 +(I + X)?/2)/2 

admits Chebyshev quadrature. The nodes for the corresponding Chebyshev rules Q5 are 
given by the zeros of p,, where 

(23) P.(X) = T.? 82X 2 -1)T,( 2x ? 2 + 1)- 
Using (21), let iw be defined by 

(24) -(X) = (j- X) = X-12(1-X) / 1 x ) /2. 

Since w is a weight function on [0, 1] admitting Chebyshev quadrature, so is w. By 
(22), the nodes of the corresponding Chebyshev rules Q are the zeros of 

(25) pi, ( x =, (2 VI - x -l)Tn (2 V1- x + 1)-. 
Applying Lemma 1 (a0 = 0) to -W and Qn gives the weight function w6 on [-1, 1] and 
the corresponding Chebyshev rule Q2. 

To establish the Chebyshev quadrature rules Q 6n_ we consider again the weight 
function w1 and the corresponding Radau rules Q+ and Q- in (15) and (16). 
Transforming w1 and Q- to the interval [-1, 0] and w1 and Q+ to the interval [0,1] 
and compounding yields the weight function w4 in [-1, 1] together with a quadrature 
rule Q* . Owing to symmetry, the rule Q * has degree of precision 2n - 1. The 
2n - 2 nodes in (-1, 1) are equally weighted, for the nodes -1 and 1 the weights are 
half as large as the weight of the other nodes. Applying Lemma 1 again gives on 
[0, 1] the weight function w in (21) and a quadrature rule Q* having degree of 
precision n - 1. Qu has in (0, 1) n - 1 equally weighted nodes; for the node 1 the 
weight is half as large as the weight of the other nodes. With the help of the 
transformation y = 1 - x we obtain on [0,1] the weight function -W in (24) together 
with a corresponding quadrature rule Q*. Applying Lemma 1 again now yields the 
weight function w6 and the Chebyshev quadrature rule Q, 6 . 

THEOREM 3. The weight function w6(x) = (1 -x2)-3/4(1 + (1 - X2)1/2)1/2 admits 
Chebyshev quadrature. The nodes of the corresponding Chebyshev rules Q6 are given by 
the zeros Of p,6 where 

(26) P26n,(x) = Tm(2/1 -x2_ 1)Tm(21 - x2 + 1) - 

(2) XP2t li- x) = [Tm ( (2 x-1) - T -1(2 
* [Tm(2 1 -X2 + 1) + Tmli(2 1 - + 

In connection with the open problem of characterizing all weight functions 
admitting Chebyshev quadrature, we mention that the Jacobi weight function 
(1-X2)- 3/4 does not admit Chebyshev quadrature [6]. 

Remarks. (a) Note that the polynomial p2 is symmetric on the interval [-1, 1] 
and has even degree 2n. Hence P,?p, PP, and P26, are also polynomials because of 
the identities P (x) = P2,4(r), P.?(x) = P,4 (X2x + 2 ), P.? = p4,( 1 x), and 

p27(X) 
= p2,,( 1 - X2). Applying the same reasoning, P2,1 can also be shown to 

be a polynomial by virtue of the identity xp26,1_1(x) = q2n1(V1 - x2), where q2n1 is 
defined by 

q211(x) = [1T.(2x - 1) IT.-1(2x - 1)] [T.?(2x + 1) + T.?-1(2x + 1)], 
since again, q2n1 is a symmetric polynomial of even degree 2n. 
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(b) Since T, (x) = cos(n arccos x), the zeros of P2m-1 and P -mI1 can be obtained 
explicitly. Using the identity (see, e.g., [13, p. 22]) 

T,,(2x- 1) + 1>,(2x - 1) = T2n(rX) + T2n-2(vY) = 2rT2n-Jr4 
we have that the zeros of the symmetric polynomial P4m agree with those of the 
function t2,,_1, where t2,,l1 is defined by 

t2m-1l(X)= T2n-1( XI); 

and by similar argument, that the zeros of P6m_ 1 agree with those of t , where 

t2" ,1 is defined by 

i2ml-1( = 12mn-V( 1-(1 -x2)1/2) Ixi < 1. 

(c) Let W be defined by W(x) = w(-x). If w admits Chebyshev quadrature, then 
so does W. This follows by transforming w and Qn by a reflection at the origin on 
the interval [-1, 1]. Applying this argument to w5 shows that -wi also admits 
Chebyshev quadrature, where -i is defined by 

i5(X) = W1(X)( - X) 174(/2 +(i _ X)1/2)1/2 

3. Construction of Weight Functions Having Infinitely Many Chebyshev Quadra- 
ture Rules. Weight functions admitting Chebyshev quadrature are rare (Gautschi [7, 
p. 109]). Therefore, one may seek weight functions having infinitely many Chebyshev 
quadrature rules. Apart from the weight functions wl, w2, and w3, the author has 
found in the literature only three other weight functions having this property. They 
are given by Geronimus [10] as follows: 

(28) WA(X) = W1(X) 
I 

2I2 7 al < 
I 

0 for all x e (-a, a), 0 < a < 1, 

2)/x1(1I a2)(I - a) + 2a( X2 - a 2) 
(29) WB(X) = W(X)(X2 - a2)/2 (1 - 2)(1 - a) + a(x2 a2) 

wc~x)= 1() 1 ?a2 - 2a)x a 
t |~~~~~~~~~~~~~a| < 2 

1 + a 2- 2ax 
WC(X) = Wi(X) I + b2-_ 2bx 

(30) 2?+b2- V(1-b2)(4-b2 ) 
a= 

3b 
b < , ja <1. 

For each of these three weight functions, Chebyshev quadrature rules Q, exist for 
every even n. In the case of WB with a = 0 see also Gautschi [8, p. 483], where the 
Gaussian degree 2n - 1 for even n has been proved. 

We now indicate a simple method for constructing other weight functions having 
infinitely many Chebyshev quadrature rules. Given a weight function Wa on [-1,1] of 
the form 

(31) Wa(X) = Wi(X)Va(X) 



WEIGHT FUNCTIONS ADMITTING CHEBYSHEV QUADRATURE 257 

having a Chebyshev quadrature rule Q', we transform w, and Q' to the interval 
[0, 1] and apply Lemma 1. We obtain on [-1,1] the weight function 

(32) w,,(x) = wl(x)v,(2x22-X1) = Wi(X)Va(T2(X)) 

and a corresponding Chebyshev quadrature rule 2bn. Repeating this procedure and 
noting that 

(33) Tn1(Tm)= Tnm' 

we obtain the following theorem. 

THEOREM 4. Let wa(x) = wl(x)v,(x) be a weight function having a Chebyshev 
quadrature rule with n nodes and let k E N. Then the weight function 

(34) wb(x) = Wl(X)Va(T2K (X)) 

has a Chebyshev quadrature rule with 2kn nodes. 

As a first example, we apply Theorem 4 to the weight function w2 of Ullman given 
in (6). In the special case k = 1 we arrive at the weight function WA in (28) and the 
corresponding result of Geronimus [10]. 

Applying Theorem 4 to the weight function W3 of Byrd and Stalla [2] for k = 1, we 
obtain that the weight function 

(35) WD(X) = W1(X) 2' a > 1, 

has a Chebyshev quadrature rule Q/D for every even n E N. 
In the case of weight functions w4 and w6 we arrive at the weight functions 

(36) WE(X) W1(X)T2 (X )1/2(1 ?T (X )1/2 k E N, 

(37) wF( X ) = (1 - X 2) 3/4I U2K(X) I1/'2{1 ?(i - X2 )l/2UA( X ) }1/2 

k E N, 

having for every n C N a Chebyshev quadrature rule with 2kn nodes. (U,, denotes 
the Chebyshev polynomial of the second kind of degree m.) With the help of WE 

resp. wF we see that for every k E N there exists a weight function admitting 
infinitely many Chebyshev quadrature rules, which has 2k resp. 2- 1 pairwise 
distinct singularities in (-1, 1). 

Finally, we mention two generalizations of the above principle for the construc- 
tion of weight functions admitting Chebyshev quadrature. Instead of transforming 
w, and Q, in (31) to the interval [0,1] we transform both to the interval [a, 1], 
0 < a < 1, and then apply Lemma 1. For example, in the case of the weight 
function w2, we arrive at the weight function WB in (29) and the corresponding result 
of Geronimus [10]. A further variation is given by the additional transformation 
y = a + 1 - x before applying Lemma 1. If w, is nonsymmetric on [-1, 1], this also 
leads to new weight functions admitting Chebyshev quadrature. 
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